УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Полная популярная библейская энциклопедия
Архитектурный словарь
Бизнес словарь
Биографический словарь
Словарь Джинсы
Логический словарь
Медицинский словарь
Морской словарь
Религиозный словарь
Сексологический словарь
Словарь имен
Словарь мер
Словарь нумизмата
Словарь по психологии
Словарь символов
Финансовый словарь
Этнографический словарь
Большой Энциклопедический словарь
Большой бухгалтерский словарь
Cловарь-справочник по Древней Греции, Риму и мифологии
Аббревиатуры
Биографический словарь Франции
Новейший философский словарь
Словарь наркотического сленга
Словарь русских личных имен
Словарь русских синонимов
Словарь русских технических сокращений
Словарь строителя
Словарь церковных терминов
Словарь эпитетов
Ф.А. Брокгауз, И.А. Ефрон. Энциклопедический словарь
Финансовый энциклопедический словарь
Энциклопедия Кольера
Этимологический русскоязычный словарь Фасмера
Этимологический словарь Крылова



Главная > УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ
УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ К статье УРАВНЕНИЯ Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения. Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом. 1. Если равные величины увеличить на одно и то же число, то результаты будут равны. 2. Если из равных величин вычесть одно и то же число, то результаты будут равны. 3. Если равные величины умножить на одно и то же число, то результаты будут равны. 4. Если равные величины разделить на одно и то же число, то результаты будут равны. Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением. Квадратные уравнения. Решения общего квадратного уравнения ax2 + bx + c = 0 можно получить с помощью формулы Таким образом, существуют два решения, которые в частном случае могут совпадать. Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители. Например, уравнение x3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x2 - x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю: Таким образом, корни равны x = -1, , т.е. всего 3 корня. Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n-й степени имеет ровно n корней. Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде Решение такой системы находится с помощью определителей Оно имеет смысл, если Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей и отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации - система (2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений. Общая теория рассматривает m линейных уравнений с n переменными: Если m = n и матрица (aij) невырожденна, то решение единственно и может быть найдено по правилу Крамера: где Aji - алгебраическое дополнение элемента aij в матрице (aij). В более общем плане существуют следующие теоремы. Пусть r - ранг матрицы (aij), s - ранг окаймленной матрицы (aij; bi), которая получается из aij присоединением столбца из чисел bi. Тогда: (1) если r = s, то существует n - r линейно независимых решений; (2) если r < s, то уравнения несовместны и решений не существует. См. также АЛГЕБРА.


Добро пожаловать!
Большая Библиотека
приветствует Вас!

УРАВНЕНИЯ: РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ



 

 Поиск по порталу:
 

© БОЛЬШАЯ БИБЛИОТЕКА 2008 г.