ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ
ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Полная популярная библейская энциклопедия
Архитектурный словарь
Бизнес словарь
Биографический словарь
Словарь Джинсы
Логический словарь
Медицинский словарь
Морской словарь
Религиозный словарь
Сексологический словарь
Словарь имен
Словарь мер
Словарь нумизмата
Словарь по психологии
Словарь символов
Финансовый словарь
Этнографический словарь
Большой Энциклопедический словарь
Большой бухгалтерский словарь
Cловарь-справочник по Древней Греции, Риму и мифологии
Аббревиатуры
Биографический словарь Франции
Новейший философский словарь
Словарь наркотического сленга
Словарь русских личных имен
Словарь русских синонимов
Словарь русских технических сокращений
Словарь строителя
Словарь церковных терминов
Словарь эпитетов
Ф.А. Брокгауз, И.А. Ефрон. Энциклопедический словарь
Финансовый энциклопедический словарь
Энциклопедия Кольера
Этимологический русскоязычный словарь Фасмера
Этимологический словарь Крылова



Главная > ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ
ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ раздел математики, занимающийся главным образом алгебраическими операциями, производимыми над символами операции (или преобразования). Теория операторов. Во многих задачах математического анализа рассматриваются ситуации, в которых каждая точка одного пространства ставится в соответствие некоторой точке другого (или того же) пространства. Пространства могут быть абстрактными, в которых "точки" в действительности являются функциями. Соответствие между двумя точками устанавливается с помощью преобразования или оператора. В задачу теории операторов входит подробное описание и классификация различных видов преобразований и их свойств, а также разработка символических методов, позволяющих минимизировать и упростить вычисления. Обычно теорию операторов применяют к пространствам, в которых допускается сложение или умножение точек, т.е. линейным пространствам, группам, кольцам, полям и т.д. См. также АЛГЕБРА АБСТРАКТНАЯ. Проблемы и приложения. Пусть D и R - действительные линейные или векторные пространства, необязательно различные. Их элементами являются векторы, поэтому сумма двух элементов и произведение элемента на скаляр определены и удовлетворяют обычным условиям, предъявляемым к векторам. Существование конечных базисов в D и R необязательно. Пусть r, вектор из R, соответствует вектору d из D. Обозначим это соответствие T(d) = r или Td = r. Тогда T называется оператором с областью определения D и областью значений R. Оператор T является дистрибутивным, если где ? и ?? - любые действительные числа, а d и d? - любые элементы из D. Если D и R - топологические векторные пространства, в которых ?d и d + d? - непрерывные операции, то дистрибутивный непрерывный оператор называется линейным оператором. Если Q содержит D и R, то T2(d) определяется как T(T(d)) и аналогичным образом определяется Tn(d), если все эти операции имеют смысл. Операционное исчисление позволяет осуществить абстрактные постановки задач и обобщить такие разделы математического анализа, как теория дифференциальных и интегральных уравнений. Мощным стимулом для развития теории операторов стали современные проблемы квантовой теории. Наиболее полные результаты получены для дистрибутивных операторов в т.н. гильбертовом пространстве. Интерес к этой области во многом связан с представлением таких операторов интегральными преобразованиями. Двумя важными дистрибутивными операторами являются операторы дифференцирования p и интегрирования p-1. Элементами линейных пространств D и R в этом случае будут функции переменной x. Имеем где m и n - неотрицательные целые числа. Так как интегрирование приводит к появлению произвольной постоянной, p-1p необязательно является тождественной операцией p0. Формальные правила комбинирования таких операторов восходят к Дж.Булю (1815-1864); например, по теореме Тейлора (см. также КОНЕЧНЫЕ РАЗНОСТИ). В исчислении Хевисайда, разработанном О.Хевисайдом (1850-1925), пространство D ограничено областью определения функций f (x), тождественно равных нулю при отрицательных x. Главную роль играет функция 1(x), равная 0 при отрицательных x и 1 при неотрицательных x. Приведем некоторые "правила" исчисления Хевисайда: Если n! заменить гамма-функцией Г(n + 1), то первое из правил останется в силе и при нецелых n (определение гамма-функции см. ФУНКЦИЯ). Основным результатом операционного исчисления принято считать теорему о композиции, или свертке, согласно которой, если F1(p)1(x) = f1(x) и F2(p)1(x) = f2(x), то Применяя теорему о свертке к p? при ??? 0, -1, -2,..., можно определить интегрирование или дифференцирование дробного порядка. Например, рассмотрим выражение где функция y(x) и ее первые n - 1 производных обращаются в нуль при x = 0. Пусть y(x) = Y(p)1(x), g(x) = G(p)1(x). Примем Предположим, что ? (x) = F(p)-11(x). Тогда Стандартные правила включают в себя различные алгоритмы, связанные с разложениями на элементарные дроби рациональных функций асимптотических рядов и т.д. На практике y(x) = Y(p)1(x) часто записывают в виде y(x) Y(p) или . К тем же общим результатам приводит и теория функций замкнутого цикла В.Вольтерры (1860-1940). Близкие теории были построены для других операторов, например для x(d/dx) и для более общих ситуаций с несколькими операциями, Вольтеррой, Пинкерле и др. Для прикладных математиков основное преимущество операционного исчисления Хевисайда заключается в сведении трансцендентных задач с независимой переменной x к алгебраическим задачам для функций, зависящих от p. Чаще всего метод Хевисайда применяется при решении дифференциальных уравнений с постоянными коэффициентами, разностных уравнений и интегральных уравнений с ядром K(x, t) = K(x - t). В общем случае при распространении методов операционного исчисления на более сложные уравнения теряется характер "чистой алгебраизации". Строгое обоснование соотношения F(p)1(x) = f (x) было дано с помощью интегральных преобразований Лапласа или Фурье, или абстрактно, в терминах операторов в некоторых линейных топологических пространствах, таких, как гильбертово пространство. Такой подход позволил установить условия применимости эвристических правил.


Добро пожаловать!
Большая Библиотека
приветствует Вас!

ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ



 

 Поиск по порталу:
 

© БОЛЬШАЯ БИБЛИОТЕКА 2008 г.