Закон Дунса Скота
Закон Дунса Скота Закон Дунса Скота
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Полная популярная библейская энциклопедия
Архитектурный словарь
Бизнес словарь
Биографический словарь
Словарь Джинсы
Логический словарь
Медицинский словарь
Морской словарь
Религиозный словарь
Сексологический словарь
Словарь имен
Словарь мер
Словарь нумизмата
Словарь по психологии
Словарь символов
Финансовый словарь
Этнографический словарь
Большой Энциклопедический словарь
Большой бухгалтерский словарь
Cловарь-справочник по Древней Греции, Риму и мифологии
Аббревиатуры
Биографический словарь Франции
Новейший философский словарь
Словарь наркотического сленга
Словарь русских личных имен
Словарь русских синонимов
Словарь русских технических сокращений
Словарь строителя
Словарь церковных терминов
Словарь эпитетов
Ф.А. Брокгауз, И.А. Ефрон. Энциклопедический словарь
Финансовый энциклопедический словарь
Энциклопедия Кольера
Этимологический русскоязычный словарь Фасмера
Этимологический словарь Крылова



Главная > Закон Дунса Скота

Закон Дунса Скота

Закон Дунса Скота
 - закон логики классической, характери­зующий логическое противоречие и импликацию материальную. За­кон можно передать так: ложное высказывание влечет (имплици­рует) любое высказывание. Напр.: «Если дважды два не равно четырем, то, если дважды два четыре, вся математика ничего не значит». Первое упоминание закона принадлежит средневековому фило­софу и логику Дунсу Скоту, прозванному «тонким доктором» схо­ластики. Амер. философ и логик К. И. Льюис (1883-1964), поло­живший начало исследованию модальной логики, отнес данный закон к парадоксальным положениям классической логики. В пред­ложенной самим К. И. Льюисом новой теории логического следо­вания — т. наз. теории строгой импликации — 3. Д. С. не­доказуем. Но в этой теории есть собственный аналогичный парадокс, говорящий уже о логической невозможности: логически невоз-   можное высказывание влечет любое высказывание. Напр.: «Если снег бел и вместе с тем не бел, трава бывает только черной». С использованием символики логической (р, q — некоторые выска­зывания; ~ - отрицание, «неверно, что»; —> импликация, «если, то») 3. Д. С. выражается формулой: ~p->(p->q), если неверно, что p, то если р, то q; или эквивалентной ей в класси­ческой логике формулой: (p&~p)->q, если р и не-р, то q. Если принимаются высказывание и его отрицание, то, исполь­зуя данные формулы в качестве схем вывода, можно получить лю­бое высказывание. В подобного рода переходах есть элемент пара­доксальности. Особенно заметным он становится, когда в качестве следствия берется явно ложное и совершенно не связанное с по-сылками высказывание. Напр.: «Если Солнце и звезда, и не звезда, то Луна сделана из зеленого сыра». 3. Д. С. есть своего рода предостережение против принятия лож­ного высказывания: введение в научную теорию такого высказыва­ния ведет к тому, что в ней становится доказуемым все что угодно и она перестает выполнять свои функции. Однако предостережение не настолько очевидно, чтобы стать одним из правил логического следования. Не все современные описания следования принимают 3. Д. С. в качестве правомерного способа рассуждения. Уже построены теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми. Если 3. Д. С. не принимается, то появление противоречия в сис­теме утверждений становится допустимым. Такое более «терпи­мое» отношение к противоречию лежит в основе логических тео­рий, получивших название паранепротиворечивой логики.



Добро пожаловать!
Большая Библиотека
приветствует Вас!

Закон Дунса Скота



 

 Поиск по порталу:
 

© БОЛЬШАЯ БИБЛИОТЕКА 2008 г.